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Nonequilibrium dynamics in the complex Ginzburg-Landau equation
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Results from a comprehensive analytical and numerical study of nonequilibrium dynamics in the two-
dimensional complex Ginzburg-Landau equation have been presented. In particular, spiral defects have been
used to characterize the domain growth law and the evolution morphology. An asymptotic analysis of the
single-spiral correlation function shows a sequence of singularities—analogous to those seen for time-
dependent Ginzburg-Landau models w@iin) symmetry, wheren is even.
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Much recent interest has focused on pattern formation idefects are vortices, and domain growth is driven by the
the complex Ginzburg-LandalCGL) equation attraction and annihilation of vortex-antivortex pairs. The
relevant growth law for the characteristic length scale is
I(T ) i i L(t)~ (t/Int)*2 [11,5]; and the analytic form of the time-
o =y(r,t)+(1+ia)V2y(r,t) dependent correlation functiorfwhich characterizes the

evolving morphology has been obtained by Bray and Puri,
and (independently Toyoki [7]. Without loss of generality,
we focus on the case wittB=0. For 0<8<pB; (B

. =1.397[9]), spirals(which are asymptotically plane wayes
where (r,t) is a complex order-parameter field that de-are linearly stable to fluctuations. Fg8,<B<p, (8,
pends on space ] and time €). In Eq.(1), « andg are real =1.82[10,3)), spirals are linearly unstable to fluctuations,
parameters. The CGL equation arises in a range of diverdeut the growing fluctuations are advected away, i.e., the spi-
contexts, as reviewed by Cross and Hohenlp&tgThis uni-  ral structure is globally stable. Finally, f@r,<g, the spirals
versality arises from the fact that the CGL equation providesire globally unstable and cannot exist for extended times
a generic description of oscillations in a spatially-extended10]. Our results are relevant for the parameter regime with

—(1+iB)|y(r,v)|29(r ), (1)

system near a Hopf bifurcatidr2]. B=<B,, where spiral defects are an important feature of the
The CGL equation exhibits rich dynamical behavior with morphology.
variation of the parameters and 8, and the “phase dia- Figure 1 shows the typical evolution from a small-

gram” has been investigatédhostly numericallyin various ~ amplitude random initial condition for the case wifh
studies[3]. In a large range of parameter space, the emer=0.75. Our numerical simulations were performed by imple-
gence and interaction of spiral defect structures characterizesenting an isotropic Euler-discretization of Egl) on
the morphology. In this paper, we study the nonequilibriumN?-lattices (N= 256 for Fig. 1, with periodic boundary con-
dynamics of the CGL equation resulting from a small- ditions in both directions. The discretization mesh sizes were
amplitude random initial condition. In general, this nonequi-At=0.01 andAx=1.0. In Fig. 1, we plot constant-phase
librium evolution is referred to as “phase ordering dynam-regions and the relevant color coding is provided in the fig-
ics” or “domain growth,” and constitutes a well-studied ure caption. The evolving morphology is characterized by
example of far-from-equilibrium statistical physidg,5|. spirals and antispirals, and there is a typical length stale
Our analytical understanding of phase ordering systems hasg., inter spiral spacing or the square root of inverse defect
depended critically upon modeling the dynamics of defectslensity, which is the definition we will use subsequently.
in these systemge.g., interfaces, vortices, monopoles, etc.  Figure Za) plots IfL(t)] vs Int for five representative
[5-8]. In this communication, we use spiral defect structuressalues of 8. The length-scale data was obtained from five
to characterize the evolution morphology in the CGL equaindependent runs oN? lattices withN=1024. After an ini-
tion. Many important features emerge in our study, whichtial transient period, the length scdlét) should saturate to
should be of great relevance for both experiments and sutan equilibrium value I(;) because of an effective spiral-
sequent numerical simulations. antispiral repulsive potentigl]. However, we stress that the
For simplicity, we will focus on the CGL equation with local order parameter continues to be time dependent—only
a=0 and dimensionalityd=2. However, the results pre- the morphology of the system undergoes statistical “freez-
sented here are also relevant for the cases wittD andd ing.” This should be contrasted with th@=0 case, where
>2, as the underlying paradigm does not change, i.e., spiralfortices continue to anneédt zero temperatuy@st— . As
continue to determine the morphology in large regions ofa matter of fact, the data fg#=0.25,0.5 in Fig. 23) does not
parameter space. Following the work of Hag8h Aranson  exhibit this morphological freezing on the time scales of our
et al. [10], and Chate and Mannevill&], let us briefly dis-  simulation, though signs of the crossover are evidentgor
cuss the phase diagram of tde=2 CGL equation witha =0.5.
=0. The limiting case8=0 corresponds to the dynamical = To understand this crossover behavior, we recall the ana-
XY model, which is well understood. The approprigp®@int)  lytical solution for anm-armed spiral due to Hagd®]
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FIG. 1. Evolution of the CGL equation from a small-amplitude I I I
random initial condition. The evolution pictures were obtained from
an Euler-discretized version of E(.) with «=0, 8=0.75, imple-
mented on arN? lattice (N=256). The discretization mesh sizes 25 |-
were At=0.01, Ax=1.0; and periodic boundary conditions were
imposed in both directions. The snapshots show regions of constar
phaseﬁ,/,ztan’l(lm yIRe), measured in radians, with the fol-
lowing color coding:#,[1.85,2.15 (black); [3.85,4.19 (dark
gray); [5.85,6.19 (gray). The snapshots are labeled by the appro-

priate evolution times. or n
—

P(rt)y=p(rexd —iwt+imo—ip(r)], )
wherer=(r,6); and w=B(1—q?), whereq is a constant 15 _
that is determined by [9]. The limiting forms of the func-
tions p(r) and ¢(r) are

P(r)_’ Vl_q ’ d),(r)_)qv as r—o,,
10 | | |
p(r)—ar™, ¢'(r)—r, as r—Q0, 3 2 3 4 5

wherea is a constant that is determined by finiteness condi- 1

tions. We will focus on the case witim=*+1, as only one- FIG. 2. (@ Plot of IML®)] vs Int for =0 and B
armed spirals are stable in the evolut[®} Furthermore, we —0-25,0.5,0.75,1.0,1.25—denoted by the specified symbols. The
are only interested in distances- ¢, where¢ is the defect char_actenstlc length scal_e(t) is obtained f_rom the square root of
core size. Our numerical results show that the Order_the inverse defect densny—_measured directly from snapshots as
parameter amplitude saturates to its maximum value on 3h0wn In Fig. 1, Th.e m_;mencal data shown here.were qbta'nEd as
length scalez~O(1) dimensionless unit. In Table I, we an average over fl\{e independent runs Kt lattices (with N
present typical values af for the different values off con- =1024). The solid line has a slope of 1/&) Plot of saturation

. . : ! length Ly vs g~ for B values ranging from 0.75 to 1.20. The
sidered here. We defing as the radial distance from the corresponding values af (as a function ofg) are obtained from

spiral center where the order-parameter amplitude reach@g,gan's solution, cf. Fig. 5 of Refd]. The solid line denotes the
half its maximum value. On the other hand, the maximumgest jinear fit to the numerical data.

defect length scale fofsay B=1.25 in Fig Za) is L

=13.0. Thus, we consider the spiral form in BE@) with  tween a spiral and a vortex is only apparent on length scales

p(r)=+v1—q? and ¢(r)=qr (appropriate for —). gr>1. Thus, the early evolution should be analogous to that
We expect that spirals behave similarly to vorticeslfor for the XY model, both in terms of the domain growth law

<L, whereqL.~O(1). This is because the distinction be- and correlation function. In Fig.(d), the solid line has a
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TABLE I. Spiral core size §) for different values of3. We
define ¢ as the radial distance from the spiral center where the
order-parameter amplitude reaches half its maximum value.

B 0.0
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--- L=15

0.25 0.50 0.75

— L=25

1.0
¢ 0.997

---- L=50
1.25

1.002 1.014 1.025 1.031

L=100

1.032

slope of 1/2 and the initial growtlfat least for 3<0.75)
appears to be comparable with the behavior for the XY
model, i.e.,L(t)~(t/Int)? for d=2. Over extended time
intervals, this growth law is similar to power-law growth
with an “effective exponent” less than 1{22]. From scal-
ing arguments, we also expect the saturation lerigtto
scale withL.. Figure 2b) plotsL¢ vs g~ ! for a range of$
values, and demonstrates that our numerical data is consis
tent withLs~q~ 1. We can also obtain the scaling law for the
crossover time and the corresponding numerical regntis

shown hergare in agreement with it.

Next, we consider the correlation function for the evolu-
tion morphology shown in Fig. 1. It is obviously relevant to
first consider the correlation function for a single spiral of

T FIG. 3. Correlation function for the one-armed spiral solution
length L, as the snapshots in Fig. 1 can be thought of asyhenpg=0.75 (q=0.203). We plotC(r,)/C(0) vsr,/L for dif-
consisting of disjoint spirals of size. (Of course, this ig-

0.5

C(r,,)/C(O0)

_______

/L

of Eq. (5).

ferent spiral sized, = 15,25,50,100—denoted by the specified line
nores modulations of the order parameter at spiral-spiraypes. These results are obtained from a direct numerical integration
boundaries but we will discuss those latewe have ap-

proximated the one-armed single-spiral solution y&st)

=1-qg?exgd—iwt+i(f—qr)]. The correlation function is not morphologically equivalent because there is more rota-

obtained by considering the correlation between pomts tion in the phase as one goes out further from the core.
andr, (=r;+r,,) and integrating over, as follows:

1 N - -
C(rip= VJ dry Re[4(rq,t)g(ro,t)*th(L—ry)
(1-0°)
Vv

Ref dryexdi(6,— 6,—qry

+Q|F1+F12|)]h(|-_|F1+F12|),

4

Figure 3 plotsC(r1)/C(0) vsr,/L for the case with
B=0.75 (@=0.203). These results are obtained by a direct
numerical integration of Eq5). We consider four different
values ofL. The functional form in Fig. 3 exhibits near-
monotonic behavior for small values bf(i.e., in the vortex
or XY limit); and pronounced oscillatory behavior for larger
values ofL, as is expected from the integral expression. No-

tice thatr,,/L<2—Ilarger values of ;, correspond to the
point r, lying outside the defect.

) ) ) The asymptotic behavior of the correlation function in the
whereV is the spiral volur_ne; and we have introduced thejmit r=ry,/L—0 (thoughr ,/é>1) is of considerable im-
step functionh(x)=1 (0) if x=0 (x<0). The step func-

the defect of sizé..

> " 4 SER __portance as it determines the tail of the momentum-space
tion ensures that we do not include points which lie outsidesirycture factof5]. In particular, we are interested in the

It is convenient to introduce variableg, — 6,=6; X
=r./L; r=rq,/L, to obtain

(1—q2) 1 2m
Ref dxxJ de
0 0 (X?+r2+2xr cosh)?

a
X exf —iqL{x— (x?+r2+2xr cosf)¥?%]

C(rip=

x+re'?

X h[1— (x?+r?+ 2xr cos®)¥?], (5)
where we have used= 72 in d=2. Thus, the scaling form
of the single-spiral correlation function i€(rq5)/C(0)
=g(r1,/L,g%L?). In general, there is no scaling with the
spiral size because of the additional factdr. We recover
scaling only in the limitg=0 (8=0), which corresponds to
the case of a vortex. Essentially, spirals of different sizes are
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singular part of the correlation function as—0. In this

limit, we can discard the step function in E@) as it only
provides corrections at the edge of the defect. The
asymptotic analysis of the integral in EG) involves con-
siderable algebra, which we will report in detail elsewhere.
Here, we confine ourselves to quoting the final result for the

singular part ofC(r,),

1SS L@
Csind 12 =5 ,Zo mE:O (=1)P (2p)!(2m)!

I'(3+m)?

L(z—-p)(m+p+1)?

X (2m+21)(2p+1)r2M P D nr. (6)
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Equation(6) is one of the central results of this paper and 1 - . )
we would like to briefly discuss its implications. The osk R ]
leading-order singularity is the same as that for the XY =
model (8=q=0), Cgnfr12=3r’Inr [13], as expected. S 051 T
However, there is also a sequence of subdominant singulari- %025 L 4
ties proportional to@L)?r*Inr, (qL)*r®Inr, etc., and these S
become increasingly important as the length scéale 0 °
increases. These subdominant terms @n(r,) are ~0.25 s s s
reminiscent of the leading-order singularities in models
with O(n) symmetry, wheren is even[5,13]. Of course, ! ' ' G
in the context ofO(n) models, these singularities only arise 075 .
for n=d as there are no topological defects unless this =
condition is satisfied. In the present context, all these terms Q 0.5 T
are already present fod=2. The implication for the :?:0,25_ i
structure-factor tail is a sequence of power-law decays o]
with S(k)~(qL)2M= DL/ (kL)9+2™  where m=1,2, etc. 0 Ty
Thus, though the true asymptotic behavior d+=2 is ~025 L ! L
still the generalized Porod tail, S(k)~L2(kL) 4, it
may be difficult to disentangle this from other power-law ! ' ' G
decays. 0.75 8

Finally, Fig. 4 compares our numerical data for the =
correlation function with the functional form of the single- g 0°r |
spiral correlation function. Recall that the correlation :?:().25- g
function does not scale with the characteristic length because o
of the spiral nature of the defects. In Figga4-(c), we 0 MNoosedE "
have plotted numerical data f@(rq,,t)/C(0Ot) vsrq, att ~025 - . -
=500, and B=0.75,1.0,1.25. For the comparison with 0 3 10 15 20
Eq. (5), the length scald. is taken to be an adjustable I,
parameter. In each case, the best-fit valué ohatches the FIG. 4. Numerical data for the correlation function

length scale obtained from the inverse defect densiBe  C(r;,,t)/C(0t) vs ry, at t=500 for the casesx=0 and (a) 8
Fig. 2(a)] within 10%. As is seen from Fig. 4, the single- =0.75;(b) 8=1.0; (c) B=1.25. The numerical data were obtained
spiral correlation function is in good agreement with theas an average over five independent runsNérlattices (with N
numerical data for the multispiral morphology up to =1024). The solid line refers to the numerical integration of 4.
(approximately the first minimum. As a matter of fact, the With L as an adjustable parameter. Subsequently.riheaxis is
agreement is excellerfperhaps fortuitously for g=1.25,  Scaled so that the poir€(rs,,t)/C(01)=1/2 is matched for the
shown in Fig. 4c). We should remark that the correlation numerical data and the analytical expression.
function data shown in Figs.(d) and(c) (corresponding to
$5=1.0,1.25) does not change at later times, because the dee expect that the correlation function will be dominated by
fect |ength scales have a|ready frozentbySOO for thesw the single-spiral result—in accordance with our numerical
values[see Fig. 23)]. results. . . _
In the context of phase ordering dynamics, the Gaussian 10 Summarize, we have undertaken a detailed analytical
auxiliary field (GAF) ansatz[5-8] has proven particularly %@L r:gg:{;gﬁl Iggidgarcl); S&gﬁzltbrfan_ gyr;ﬁ;mggn:gmthe
useful for the characterization of multidefect morphologies. L ° '
We have critically examined the utility of the GAF%nsatgz in growth process is analogous to that for the XY model,

. 7 which is well understood. At later times, distinct effects
the present contextl4] and find that it is only reasonable at due to spirals are seen and the evolving system freezes
early times—where, in any case, the ordering process i

fin a statistical sengeinto a multispiral morphology.
analogous to that for the XY model. We are presently studyywe nave undertaken an asymptotic analysis of the

ing methods of improving the GAF ansatz for the CGL equa-orrelation functionC(ry,) for a single spiral. It exhibits a

tion and will discuss this elsewhere. . sequence of singularities ag,/L—0. Furthermore, this
More generally, the utility of the GAF ansatz arises from correlation function is in good agreement with the numerical

the summation over phases from many defects, which resuligata for multispiral morphologies, over an extended range of

in a near-Gaussian distribution for the auxiliary field. How- distances.

ever, in the present context, the shocks between spirals ef S.P. is grateful to A.J. Bray and H. Chate for useful dis-

fecpvely isolate one spiral region from the influence of Ot.hercussions. S.K.D. is grateful to the University Grants Com-
regions. As a matter of fact, the waves from other spirals

. mission, India, for financial support. M.C.C. thanks the
decay exponentially through the shock and the phase of &chool of Physical Sciences, JNU, for hospitality during the

point is always dominated by the nearest spiral. Thereforestay in which this work was begun.
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