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Nonequilibrium dynamics in the complex Ginzburg-Landau equation
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Results from a comprehensive analytical and numerical study of nonequilibrium dynamics in the two-
dimensional complex Ginzburg-Landau equation have been presented. In particular, spiral defects have been
used to characterize the domain growth law and the evolution morphology. An asymptotic analysis of the
single-spiral correlation function shows a sequence of singularities—analogous to those seen for time-
dependent Ginzburg-Landau models withO(n) symmetry, wheren is even.
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Much recent interest has focused on pattern formation
the complex Ginzburg-Landau~CGL! equation

]c~rW,t !

]t
5c~rW,t !1~11 ia!¹2c~rW,t !

2~11 ib!uc~rW,t !u2c~rW,t !, ~1!

where c(rW,t) is a complex order-parameter field that d
pends on space (rW) and time (t). In Eq. ~1!, a andb are real
parameters. The CGL equation arises in a range of div
contexts, as reviewed by Cross and Hohenberg@1#. This uni-
versality arises from the fact that the CGL equation provid
a generic description of oscillations in a spatially-extend
system near a Hopf bifurcation@2#.

The CGL equation exhibits rich dynamical behavior w
variation of the parametersa and b, and the ‘‘phase dia-
gram’’ has been investigated~mostly numerically! in various
studies@3#. In a large range of parameter space, the em
gence and interaction of spiral defect structures characte
the morphology. In this paper, we study the nonequilibriu
dynamics of the CGL equation resulting from a sma
amplitude random initial condition. In general, this noneq
librium evolution is referred to as ‘‘phase ordering dyna
ics’’ or ‘‘domain growth,’’ and constitutes a well-studie
example of far-from-equilibrium statistical physics@4,5#.
Our analytical understanding of phase ordering systems
depended critically upon modeling the dynamics of defe
in these systems~e.g., interfaces, vortices, monopoles, et!
@5–8#. In this communication, we use spiral defect structu
to characterize the evolution morphology in the CGL eq
tion. Many important features emerge in our study, wh
should be of great relevance for both experiments and s
sequent numerical simulations.

For simplicity, we will focus on the CGL equation wit
a50 and dimensionalityd52. However, the results pre
sented here are also relevant for the cases withaÞ0 andd
.2, as the underlying paradigm does not change, i.e., sp
continue to determine the morphology in large regions
parameter space. Following the work of Hagan@9#, Aranson
et al. @10#, and Chate and Manneville@3#, let us briefly dis-
cuss the phase diagram of thed52 CGL equation witha
50. The limiting caseb50 corresponds to the dynamic
XY model, which is well understood. The appropriate~point!
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defects are vortices, and domain growth is driven by
attraction and annihilation of vortex-antivortex pairs. T
relevant growth law for the characteristic length scale
L(t);(t/ ln t)1/2 @11,5#; and the analytic form of the time
dependent correlation function~which characterizes the
evolving morphology! has been obtained by Bray and Pu
and ~independently! Toyoki @7#. Without loss of generality,
we focus on the case withb>0. For 0<b<b1 (b1
.1.397@9#!, spirals~which are asymptotically plane waves!
are linearly stable to fluctuations. Forb1,b<b2 (b2
.1.82 @10,3#!, spirals are linearly unstable to fluctuation
but the growing fluctuations are advected away, i.e., the
ral structure is globally stable. Finally, forb2,b, the spirals
are globally unstable and cannot exist for extended tim
@10#. Our results are relevant for the parameter regime w
b<b2, where spiral defects are an important feature of
morphology.

Figure 1 shows the typical evolution from a sma
amplitude random initial condition for the case withb
50.75. Our numerical simulations were performed by imp
menting an isotropic Euler-discretization of Eq.~1! on
N2-lattices (N5256 for Fig. 1!, with periodic boundary con-
ditions in both directions. The discretization mesh sizes w
Dt50.01 andDx51.0. In Fig. 1, we plot constant-phas
regions and the relevant color coding is provided in the fi
ure caption. The evolving morphology is characterized
spirals and antispirals, and there is a typical length scaleL,
e.g., inter spiral spacing or the square root of inverse de
density, which is the definition we will use subsequently.

Figure 2~a! plots ln@L(t)# vs lnt for five representative
values ofb. The length-scale data was obtained from fi
independent runs onN2 lattices withN51024. After an ini-
tial transient period, the length scaleL(t) should saturate to
an equilibrium value (Ls) because of an effective spira
antispiral repulsive potential@1#. However, we stress that th
local order parameter continues to be time dependent—o
the morphology of the system undergoes statistical ‘‘fre
ing.’’ This should be contrasted with theb50 case, where
vortices continue to anneal~at zero temperature! ast→`. As
a matter of fact, the data forb50.25,0.5 in Fig. 2~a! does not
exhibit this morphological freezing on the time scales of o
simulation, though signs of the crossover are evident fob
50.5.

To understand this crossover behavior, we recall the a
lytical solution for anm-armed spiral due to Hagan@9#
©2001 The American Physical Society40-1
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c~rW,t !5r~r !exp@2 ivt1 imu2 if~r !#, ~2!

where rW[(r ,u); and v5b(12q2), whereq is a constant
that is determined byb @9#. The limiting forms of the func-
tions r(r ) andf(r ) are

r~r !→A12q2, f8~r !→q, as r→`,

r~r !→arm, f8~r !→r , as r→0, ~3!

wherea is a constant that is determined by finiteness con
tions. We will focus on the case withm561, as only one-
armed spirals are stable in the evolution@9#. Furthermore, we
are only interested in distancesr @j, wherej is the defect
core size. Our numerical results show that the ord
parameter amplitude saturates to its maximum value o
length scalej;O(1) dimensionless unit. In Table I, w
present typical values ofj for the different values ofb con-
sidered here. We definej as the radial distance from th
spiral center where the order-parameter amplitude rea
half its maximum value. On the other hand, the maxim
defect length scale for~say! b51.25 in Fig 2~a! is Ls
.13.0. Thus, we consider the spiral form in Eq.~2! with
r(r )5A12q2 andf(r )5qr ~appropriate forr→`).

We expect that spirals behave similarly to vortices forL
,Lc , whereqLc;O(1). This is because the distinction be

FIG. 1. Evolution of the CGL equation from a small-amplitud
random initial condition. The evolution pictures were obtained fro
an Euler-discretized version of Eq.~1! with a50, b50.75, imple-
mented on anN2 lattice (N5256). The discretization mesh size
were Dt50.01, Dx51.0; and periodic boundary conditions we
imposed in both directions. The snapshots show regions of con
phaseuc5tan21(Im c/Rec), measured in radians, with the fo
lowing color coding:ucP@1.85,2.15# ~black!; @3.85,4.15# ~dark
gray!; @5.85,6.15# ~gray!. The snapshots are labeled by the app
priate evolution times.
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tween a spiral and a vortex is only apparent on length sc
qr.1. Thus, the early evolution should be analogous to t
for the XY model, both in terms of the domain growth la
and correlation function. In Fig. 2~a!, the solid line has a

nt

-

FIG. 2. ~a! Plot of ln@L(t)# vs ln t for a50 and b
50.25,0.5,0.75,1.0,1.25—denoted by the specified symbols.
characteristic length scaleL(t) is obtained from the square root o
the inverse defect density—measured directly from snapshot
shown in Fig. 1. The numerical data shown here were obtaine
an average over five independent runs forN2 lattices ~with N
51024). The solid line has a slope of 1/2.~b! Plot of saturation
length Ls vs q21 for b values ranging from 0.75 to 1.20. Th
corresponding values ofq ~as a function ofb) are obtained from
Hagan’s solution, cf. Fig. 5 of Ref.@9#. The solid line denotes the
best linear fit to the numerical data.
0-2



XY

h

ns
e

lu
to
o
a

ir

he

id

e

a

ta-

ect

-

er
o-

he

ace
e

he

re.
the

th

on

e
tion
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slope of 1/2 and the initial growth~at least forb<0.75)
appears to be comparable with the behavior for the
model, i.e.,L(t);(t/ ln t)1/2 for d52. Over extended time
intervals, this growth law is similar to power-law growt
with an ‘‘effective exponent’’ less than 1/2@12#. From scal-
ing arguments, we also expect the saturation lengthLs to
scale withLc . Figure 2~b! plots Ls vs q21 for a range ofb
values, and demonstrates that our numerical data is co
tent withLs;q21. We can also obtain the scaling law for th
crossover time and the corresponding numerical results~not
shown here! are in agreement with it.

Next, we consider the correlation function for the evo
tion morphology shown in Fig. 1. It is obviously relevant
first consider the correlation function for a single spiral
length L, as the snapshots in Fig. 1 can be thought of
consisting of disjoint spirals of sizeL. ~Of course, this ig-
nores modulations of the order parameter at spiral-sp
boundaries but we will discuss those later!. We have ap-
proximated the one-armed single-spiral solution asc(rW,t)
.A12q2 exp@2ivt1i(u2qr)#. The correlation function is
obtained by considering the correlation between pointsrW1

and rW2 (5rW11rW12) and integrating overrW1 as follows:

C~r 12!5
1

VE drW1 Re$c~rW1 ,t !c~rW2 ,t !* %h~L2r 2!

5
~12q2!

V
ReE drW1 exp@ i ~u12u22qr1

1qurW11rW12u!#h~L2urW11rW12u!, ~4!

whereV is the spiral volume; and we have introduced t
step functionh(x)51 (0) if x>0 (x,0). The step func-
tion ensures that we do not include points which lie outs
the defect of sizeL.

It is convenient to introduce variablesu12u125u; x
5r 1 /L; r 5r 12/L, to obtain

C~r 12!5
~12q2!

p
ReE

0

1

dxxE
0

2p

du
x1reiu

~x21r 212xr cosu!1/2

3exp@2 iqL$x2~x21r 212xr cosu!1/2%#

3h@12~x21r 212xr cosu!1/2#, ~5!

where we have usedV5pL2 in d52. Thus, the scaling form
of the single-spiral correlation function isC(r 12)/C(0)
[g(r 12/L,q2L2). In general, there is no scaling with th
spiral size because of the additional factorqL. We recover
scaling only in the limitq50 (b50), which corresponds to
the case of a vortex. Essentially, spirals of different sizes

TABLE I. Spiral core size (j) for different values ofb. We
define j as the radial distance from the spiral center where
order-parameter amplitude reaches half its maximum value.

b 0.0 0.25 0.50 0.75 1.0 1.25

j 0.997 1.002 1.014 1.025 1.031 1.032
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not morphologically equivalent because there is more ro
tion in the phase as one goes out further from the core.

Figure 3 plotsC(r 12)/C(0) vs r 12/L for the case with
b50.75 (q.0.203). These results are obtained by a dir
numerical integration of Eq.~5!. We consider four different
values of L. The functional form in Fig. 3 exhibits near
monotonic behavior for small values ofL ~i.e., in the vortex
or XY limit !; and pronounced oscillatory behavior for larg
values ofL, as is expected from the integral expression. N
tice that r 12/L<2—larger values ofr 12 correspond to the
point rW2 lying outside the defect.

The asymptotic behavior of the correlation function in t
limit r 5r 12/L→0 ~thoughr 12/j@1) is of considerable im-
portance as it determines the tail of the momentum-sp
structure factor@5#. In particular, we are interested in th
singular part of the correlation function asr→0. In this
limit, we can discard the step function in Eq.~5! as it only
provides corrections at the edge of the defect. T
asymptotic analysis of the integral in Eq.~5! involves con-
siderable algebra, which we will report in detail elsewhe
Here, we confine ourselves to quoting the final result for
singular part ofC(r 12),

Csing~r 12!5
1

2 (
p50

`

(
m50

`

~21!p1m
~qL!2(p1m)

~2p!! ~2m!!

3
G~ 1

2 1m!2

G~ 1
2 2p!2~m1p11!! 2

3~2m11!~2p11!r 2(m1p11) ln r . ~6!

e

FIG. 3. Correlation function for the one-armed spiral soluti
whenb50.75 (q.0.203). We plotC(r 12)/C(0) vs r 12/L for dif-
ferent spiral sizes,L515,25,50,100—denoted by the specified lin
types. These results are obtained from a direct numerical integra
of Eq. ~5!.
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Equation~6! is one of the central results of this paper a
we would like to briefly discuss its implications. Th
leading-order singularity is the same as that for the X
model (b5q50), Csing(r 12)5 1

2 r 2 ln r @13#, as expected
However, there is also a sequence of subdominant singu
ties proportional to (qL)2r 4 ln r, (qL)4r 6 ln r, etc., and these
become increasingly important as the length scaleL
increases. These subdominant terms inCsing(r 12) are
reminiscent of the leading-order singularities in mod
with O(n) symmetry, wheren is even @5,13#. Of course,
in the context ofO(n) models, these singularities only aris
for n<d as there are no topological defects unless t
condition is satisfied. In the present context, all these te
are already present ford52. The implication for the
structure-factor tail is a sequence of power-law dec
with S(k);(qL)2(m21)Ld/(kL)d12m, where m51,2, etc.
Thus, though the true asymptotic behavior ind52 is
still the generalized Porod tail,S(k);L2(kL)24, it
may be difficult to disentangle this from other power-la
decays.

Finally, Fig. 4 compares our numerical data for t
correlation function with the functional form of the single
spiral correlation function. Recall that the correlatio
function does not scale with the characteristic length beca
of the spiral nature of the defects. In Figs. 4~a!–~c!, we
have plotted numerical data forC(r 12,t)/C(0,t) vs r 12 at t
5500, and b50.75,1.0,1.25. For the comparison wi
Eq. ~5!, the length scaleL is taken to be an adjustabl
parameter. In each case, the best-fit value ofL matches the
length scale obtained from the inverse defect density@see
Fig. 2~a!# within 10%. As is seen from Fig. 4, the single
spiral correlation function is in good agreement with t
numerical data for the multispiral morphology up
~approximately! the first minimum. As a matter of fact, th
agreement is excellent~perhaps fortuitously! for b51.25,
shown in Fig. 4~c!. We should remark that the correlatio
function data shown in Figs. 4~b! and ~c! ~corresponding to
b51.0,1.25) does not change at later times, because the
fect length scales have already frozen byt5500 for theseb
values@see Fig. 2~a!#.

In the context of phase ordering dynamics, the Gauss
auxiliary field ~GAF! ansatz@5–8# has proven particularly
useful for the characterization of multidefect morphologi
We have critically examined the utility of the GAF ansatz
the present context@14# and find that it is only reasonable a
early times—where, in any case, the ordering proces
analogous to that for the XY model. We are presently stu
ing methods of improving the GAF ansatz for the CGL equ
tion and will discuss this elsewhere.

More generally, the utility of the GAF ansatz arises fro
the summation over phases from many defects, which res
in a near-Gaussian distribution for the auxiliary field. Ho
ever, in the present context, the shocks between spirals
fectively isolate one spiral region from the influence of oth
regions. As a matter of fact, the waves from other spir
decay exponentially through the shock and the phase
point is always dominated by the nearest spiral. Theref
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we expect that the correlation function will be dominated
the single-spiral result—in accordance with our numeri
results.

To summarize, we have undertaken a detailed analyt
and numerical study of nonequilibrium dynamics in t
CGL equation. For early times (L,Lc;q21), the domain
growth process is analogous to that for the XY mod
which is well understood. At later times, distinct effec
due to spirals are seen and the evolving system free
~in a statistical sense! into a multispiral morphology.
We have undertaken an asymptotic analysis of
correlation functionC(r 12) for a single spiral. It exhibits a
sequence of singularities asr 12/L→0. Furthermore, this
correlation function is in good agreement with the numeri
data for multispiral morphologies, over an extended range
distances.

S.P. is grateful to A.J. Bray and H. Chate for useful d
cussions. S.K.D. is grateful to the University Grants Co
mission, India, for financial support. M.C.C. thanks t
School of Physical Sciences, JNU, for hospitality during t
stay in which this work was begun.

FIG. 4. Numerical data for the correlation functio
C(r 12,t)/C(0,t) vs r 12 at t5500 for the casesa50 and ~a! b
50.75; ~b! b51.0; ~c! b51.25. The numerical data were obtaine
as an average over five independent runs forN2 lattices ~with N
51024). The solid line refers to the numerical integration of Eq.~5!
with L as an adjustable parameter. Subsequently, ther 12 axis is
scaled so that the pointC(r 12,t)/C(0,t)51/2 is matched for the
numerical data and the analytical expression.
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